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I. INTRODUCTION

The history of quantum electrodynamics �QED� is an im-
pressive success story of theoretical and experimental phys-
ics. Since its development beginning in the 1920s by the
leading theorists of that time, QED has achieved incredibly
accurate experimental verification as exemplified by the
agreement of theory and experiment in the electronic �g-2�
experiments, measuring the deviation of the magnetic mo-
ment of the electron from the value that follows from the
Dirac equation, which have achieved an experimental and
theoretical accuracy of about one part in 200 million.

As the extension of the quantum-mechanical description
of a relativistic single-particle system to a many-body state
in terms of a quantized field theory, quantum electrodynam-
ics has developed through various steps and formulations
with crucial work by Dirac, Heisenberg, Pauli, Jordan, and
others �see Refs. 9–20�. Following the first formulations, the
discussion on how to regulate the occurring divergences fol-
lowed throughout the 1930s and 1940s, including seminal
papers by Weisskopf, Heisenberg, Dirac, Bethe, Tomonaga,
Schwinger, and Feynman.

The richness of phenomena arising in relativistic quantum
theory can be anticipated already in Dirac’s equation of a
relativistic spin-1/2 particle �Refs. 9, 10�. The existence of
positive and negative-energy eigenvalues extends directly to
the many-particle concept of two continua of particles and
their corresponding antiparticles. The formal solution for the
multitude of available states with arbitrarily large �negative�
energy came when Dirac postulated that in the vacuum state
the lower continuum is filled with particles �Ref. 17� �al-

a�
Electronic mail: greiner@th.physik.uni-frankfurt.de

509 Am. J. Phys. 76 �6�, June 2008 http://aapt.org/ajp
though originally postulating the proton, instead of the later-
discovered positron, as the lower-continuum counterpart to
the electron�. A year earlier, in 1929, Klein calculated the
scattering of an electron from a potential barrier with a
height that exceeds twice the electron’s rest mass �Ref. 16�.
He found large reflexion and penetrability factors �the so-
called Klein paradox�, which originate from the direct cou-
pling of the positive and negative-energy continua in such an
external potential.

In a general sense, most of the activities related to the
QED vacuum can be derived from these basic concepts and
discoveries.

The vacuum of noninteracting particles is free of excita-
tions, consisting of, in Dirac’s picture, an empty positive-
energy continuum and a filled lower continuum. Switching
on the interaction, the state is perturbed, leading to virtual
excitations of this state. Here the basic process is the vacuum
polarization, creating a virtual electron-positron pair by ex-
citing an electron from the lower to the upper continuum
with subsequent deexcitation. These perturbations affect all
quantities calculated in QED, like the well-measured lep-
tonic anomalous magnetic moment and atomic Lamb shift
�the energy difference between atomic 2s1/2 and 2p1/2 states,
which vanishes when one does not take into account vacuum
fluctuations�.

Integrating out the fermions in QED, the vacuum-
polarization effects lead to effective interaction terms that are
nonlinear in the electric and magnetic fields, generating
among other phenomena light-by-light scattering �Refs. 12,
13�. Vacuum-polarization effects can generate not only vir-
tual but real particles, which is the many-body consequence
of the Klein paradox. This can happen in extremely strong

electromagnetic fields that might even be experimentally ac-
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cessible in future high-power laser facilities �Refs. 99–102�
as well as in the strong Coulomb fields during a heavy-ion
collision leading to so-called spontaneous positron produc-
tion, or in other hypothetical external fields.

In principle, instead of investigating strong external fields,
on a theoretical level one can artificially increase the fine-
structure constant � to study QED at large coupling con-
stants, which can lead to complex nonperturbative vacuum
structures of QED. Such studies can be performed using so-
called Schwinger-Dyson-type equations or numerical simu-
lations of QED on the lattice.

Another way to consider the influence of the vacuum is to
change boundary conditions, which affects the QED vacuum
properties as had been shown originally and very elegantly
by Casimir, leading to the eponymous effect.

JOURNALS

Vacuum effects in QED are investigated over a wide range
of fields in physics, encompassing such diverse topics as
state-of-the-art laser research and the study of basic quantum
field theory. Therefore the articles spread over quite a range
of journals. However, most of them, in fact the majority of
the ones listed in the bibliography below, can be found in the
following journals:

Journal of Physics G
Nuclear Physics B
Physics Letters B
Physics Reports
Physical Review A
Physical Review C
Physical Review D
Physical Review Letters

II. VACUUM FLUCTUATIONS IN PERTURBATIVE
QED

The coupling of vacuum fluctuations to the interaction of
an electron with an external static magnetic field yields a
shift of the standard value of the leptonic gyromagnetic fac-
tor g=2 as obtained in the corresponding single-particle
Dirac equation. The theoretical and experimental determina-
tion of these fluctuations, that is, of the anomalous magnetic

ge−2

Fig. 1. Biggest contribution to the leptonic anomalous magnetic moment. A
virtual photon is exchanged across the vertex that couples the electromag-
netic field to the lepton.
moment of the electron, ae= 2 , have become a test case for
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the understanding of perturbative QED contributions, start-
ing from the analysis of the first measurements that showed a
deviation of the electron’s g factor from its Dirac value of 2
in 1947 �Ref. 30�. The first correction to this value comes
from the exchange of a virtual photon across its vertex �see
Fig. 1�, followed by more and more complex diagrams in-
cluding leptonic—and to a much suppressed degree—
hadronic vacuum polarizations. The techniques of calculat-
ing the value of g−2 to the maximum accuracy have been
perfected over the decades to an art form by Kinoshita and
his group �Ref. 37�. Their most recent publications show the
determination of the electronic g-2 by calculating the re-
markable number of 891 Feynman diagrams up to order �4;
work on the next order involving more than 12,000 diagrams
is underway. Similarly, the experimental efforts have recently
improved significantly using a Penning trap and one-electron
cyclotron techniques to study the electron’s magnetic mo-
ment �Ref. 53�. The analogous value for the muon, owing to
its larger mass, contains a much larger contribution from
hadronic virtual states beyond pure QED. The current value
for a� shows a difference of 2.6 standard deviations to the
theoretical value. Whether this discrepancy originates from
new physics remains an open question. Relevant articles are
listed in �Refs. 29–59�.

III. THE UNRUH EFFECT, NONLINEAR
ELECTRODYNAMICS, AND HIGH-INTENSITY
ELECTROMAGNETIC FIELDS

A significant effect of the QED vacuum can be studied
simply by considering an accelerated observer �Refs. 60–78�.
As was worked out by Unruh in 1976 �Ref. 60�, owing to
acceleration through the vacuum �in contrast to a constant
velocity that can be removed by switching to the appropriate
Lorentz frame�, an accelerated observer experiences a heat
bath of particles �the vacuum� with a thermal distribution at
a temperature kT= �g

2�c , where g is the acceleration of the
object in the proper frame �see Fig. 2�. This so-called Unruh
radiation is directly related to the Hawking radiation that is
emitted from a black hole with temperature kT= �c3

8�GM , where
now, following the correspondence of a gravitational field
with an accelerated observer, the gravitational acceleration of
the black hole replaces the Unruh acceleration. In fact, the
Unruh effect was described in an analysis of Hawking’s
original paper �Ref. 63�. This effect is one of the most in-

Fig. 2. A constantly accelerating object travels on a hyperbolic world line.
Signals from the darkened area cannot reach an observer traveling with the
object. A slight energy transfer from the object to vacuum fluctuations can
generate, for instance, an electron-positron pair that is emitted in opposite
directions. One of them will enter the forbidden region, whereas the other
one might interact with the object generating the heat bath with the Unruh
temperature—see �Ref. 78� for a more extended version of the argument.
triguing results of the motion through a complex vacuum.
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The effect is small, though. For normal free-fall acceleration
of g�9.8 m /s2, the temperature of the vacuum experienced
is about 4 ·10−20 K! However, thanks again to improving ex-
perimental techniques, proposals have been developed to
measure the effect �Ref. 64� using ultrastrong lasers for ac-
celerating electrons and observing the corresponding photon
emission in the laboratory frame, which has to be distin-
guished from the background of classical Larmor radiation.

In classical electrodynamics there is no photon-photon
coupling term. However, owing to the coupling of the photon
field to the polarization of the vacuum, in lowest order an
electron-positron loop, photons can interact with each other
on a quantum level. This was recognized early and was al-
ready worked out by Sauter, Heisenberg, Euler, and Kockel
in the case of constant electromagnetic fields. The so-called
1-loop effective interaction Lagrangian, generated by pro-
cesses as shown in Fig. 3, reads �Refs. 12–14, 16, 21–25�

Lvac =
2�2

45me
4 ��B2 − E2�2 + 7�E� · B� �2 + ¯ � . �1�

Many works have extended this calculation to higher orders
in the loop expansion and including varying fields.

Following this result, one intriguing approach to study the
QED vacuum, and hypothetical physics beyond that, is to
consider the vacuum as a complex medium in which light
propagates. One vacuum effect arises when photons travel
through the vacuum when perturbed by an external magnetic
field. In such a situation the vacuum acts as a birefringent
medium. The index of refraction depends upon the polariza-
tion of the light, such that a linearly polarized photon beam
will acquire a small elliptical polarization after passing
through the region with the magnetic field. Again, electron-
positron loops coupling to the incoming and outgoing photon
as well as to the photons of the magnetic field are responsible
for this effect. Current experimental efforts by the PVLAS

Fig. 3. Photons can interact with each other through vacuum polarization.

Fig. 4. A constant electric field generates a linear potential for charged
particles. A sufficiently strong and extended field can generate real lepton

pairs from the vacuum, see also Fig. 5.
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collaboration using linearly polarized light traveling through
a strong magnetic field not only show ellipticities but also
dichroism �rotation of the polarization� that is beyond Eq. �1�
and point, if correct, to physics beyond pure QED �Ref. 79�.
Several theoretical efforts exist to reconcile the results with
so far unsuccessful axion searches that in principle could be
the source of the dichroism. Improved experiments that
search for the original QED effect are under discussion. Lit-
erature is given in �Refs. 79–91�.

IV. THE QED VACUUM IN A STRONG EXTERNAL
FIELD

The case of a constant electric field not only contains the
virtual effect of the electron-positron vacuum polarization
and the induced photon-photon coupling; it also can generate
e+e− pairs based upon Klein’s original result �Fig. 4�. The
pair-production rate per volume w�E� for a constant field
strength E, following the result in �Ref. 23� reads

w�E� = eE� d2k�

�2��2 �
n=1

�
1

n
exp�−

�n�me
2 + k�

2 �
	eE	 
 �2�

integrating over the transverse momenta k� of the produced
particles. One can read off the “critical” value of the electric
field, Ecr=�me

2 /e, of about 4 ·1018 V /m, which marks the
onset of large pair-production rates. A number of calculations
improve on this ansatz by including the back reaction of the
spontaneously produced particles on the external field �Refs.
103-111�. Various astrophysical scenarios exist, in which
such field values might be reached at the surface of quark
stars and in the formation of a black hole. For example, pair
creation occurs in the so-called Kerr–Newmann geometry
�Refs. 153–155�, the pair-producing layer around a black
hole being called dyadosphere �Ref. 156�, which might be
the source of the famous and still not really understood
gamma-ray bursts �Refs. 158–160�. The effects of similarly
strong electric fields on the surface of the core of a neutron
star were analyzed in �Ref. 161�. Note that calculations exist
that question the stability of these strong fields �Ref. 162�.

One fascinating approach to make the concept of the Dirac
sea visible is to study the QED vacuum in the vicinity of a
strong localized electric field that can be supplied by the
Coulomb field of a heavy nucleus. Using the standard for-
mula for the lowest energy eigenvalue of the electron in a
hydrogen-like atom,

E1s1/2
= moc2�1 − Z2�2, �3�

the expression for the binding energy formally becomes
imaginary at Z�1 /�, signaling the collapse of the electronic
wavefunction at small distances. In a more realistic approach
one has to take into account the finite extension of the
nuclear-charge distribution. In such a calculation the elec-
tronic binding energy of the 1s state will exceed 2mec

2 for a
hypothetical nucleus with charge Z�Zcr�173 �Refs. 112–
116�. If the 1s state is not occupied the state will be filled by
an electron from the lower continuum, leading to the emis-
sion of a �monoenergetic�, so-called spontaneous positron.
This state is also called charged vacuum although, of course,
charge is not generated but the negative charge is bound to
the ion. This process is closely connected to the Klein para-
dox and can be essentially understood by solving the single-

particle Dirac equation as in Klein’s case. A charged ion with
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some large Z beyond the critical value would screen itself by
production of spontaneous positrons until its total charge has
dropped below Z=173 �Ref. 124�. An experimentally fea-
sible way to produce an overcritical charge is to study heavy-
ion collisions with a combined charge of ZT+ZP�173.
Choosing beam energies close to the Coulomb barrier, for the
case that the projectile-target system forms a long-lived
��10−20 s� nuclear quasi-molecule, the spontaneous posi-
trons should appear as a distinct line structure in the mea-
sured positron spectrum in similar manner as was indicated
in Fig. 5 for a simplified potential. Several groups investi-
gated this scenario for scattering systems up to uranium on
curium �Z=188�. After detecting erroneously identified pos-
itron and correlated electron-positron lines, the final conclu-
sion was that there was no statistically significant positron-
line structure related to supercriticality �Refs. 135–137�.
However, owing to some intermediate excitement about pos-
sible newly identified particles from the e+e− pairs, the origi-
nal idea of finding the supercritical QED states became side-
tracked. Still, the total yield of measured positrons neatly fits
with calculations including the effect of positron production
by filling the empty supercritical electronic states. At this
point a renewed experimental effort should be started to
clearly identify this exciting QED prediction experimentally
by measuring the e+ line structures. Currently, several calcu-
lations show new approaches to reach the necessary long-
lived nuclear quasi-molecular states �Refs. 144–146�. For
more information on supercritical electric fields, see �Refs.
112–152�.

A number of calculations have been performed studying
vacuum instabilities in very strong magnetic fields. The com-
bination of Coulomb and magnetic forces can lead to super-
critical states and dynamical chiral symmetry breaking in the
vacuum as well as to the instability of positronium �Refs.
163–171�.

Owing to enormous progress in the field of high-power
laser facilities and the projected continued improvements,
there are various efforts not only to study the photon-by-
photon scattering using laser light following improved calcu-
lations based upon Eq. �1�, but also reaching field strengths
of the order of Ecr where there is real electron-positron pair
production in the over-critical laser field. A number of theo-
retical calculations and experimental proposals exist for
studying the feasibility of reaching this goal in the near fu-

Fig. 5. Energy diagram for an electron in a simple square-well vector po-
tential with a depth of more than two times the electron’s rest mass. This
allows for empty states to be filled spontaneously by electrons in the Dirac
sea, leaving holes in the lower continuum that can be detected as so-called
spontaneous positrons.
ture, which are listed in �Refs. 92–102�.
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V. THE CASIMIR EFFECT

One striking manifestation of the quantum vacuum is the
change in the vacuum energy when introducing or varying
specific boundary conditions. The pioneering work in this
field was done by Casimir in his papers of 1948 �Refs. 193,
194�. He showed that two parallel perfectly conducting
plates exhibit an attractive force:

F = −
�2�c

240a4 , �4�

where a is the distance between the plates. He demonstrated
how to derive this result by considering the change in the
zero-point fluctuations by varying their boundary conditions.
Analogous calculations have been performed for many dif-
ferent geometries, sometimes leading to—at first sight—
surprising results of repulsive or attractive effects. A calcu-
lation of the Casimir effect for a perfectly conducting
spherical shell gave a repulsive force. Radiative corrections
have been considered in some detail in �Ref. 199�. Others
studied the modification of the Casimir effect in systems
with nonvanishing temperature. An intriguing study consid-
ered the drag of the vacuum on rotating objects, that is, by
considering time-dependent boundary conditions �Refs. 202–
204�. Since the concept of the dependence of vacuum ener-
gies on boundary conditions is such a general one, there are
of course a huge number of applications of this idea beyond
QED, in gravitational physics, strong-interaction physics,
and many other fields.

One should note that there is also an alternative interpre-
tation of the Casimir effect, arising from giving the boundary
conditions a physical meaning, such that the two conducting
plates are not viewed as idealized boundaries but the attrac-
tion between them originates from the interaction of the sys-
tem of those charge distributions without the need to connect
the effect to vacuum modes �Ref. 205�. Thus, the physical
interpretation of the Casimir effect is an ongoing topic �Ref.
217�. In addition to all this theoretical work there are many
experiments focusing on the Casimir effect �Ref. 198�.

The definition of what is counted as genuine Casimir-
effect measurements and calculations is constantly extending
and beyond this survey, see for instance �Ref. 206� for a
discussion. Major papers of interest are listed in �Refs. 193–
217�.

VI. QED CALCULATIONS ON THE LATTICE

In contrast to the impressive progress of numerical simu-
lations of strong interactions on a space-time lattice �“Lattice
QCD”�, a direct simulation of QED is very difficult owing to
its small coupling and long-range Coulomb forces. However,
to better understand the general behavior of the theory one
can adopt the coupling strength as a variable parameter and
explore QED behavior and the structure of the vacuum at
strong coupling strengths �SCQED, that is, strongly coupled
QED�. There are a number of numerical studies of QED
based upon different lattice formulations, the compact and
noncompact lattice QED, which in a naive continuum limit
recover the original QED but introduce subtle topological
differences. Note, however, that in the pure photonic theory
without any electrons or other charged particles present, the
system will be a free gas of photons in the limit of an infi-
nitely fine lattice. Compactification can lead to interesting

vacuum structures like the occurrence of a condensate of
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magnetic monopoles �Ref. 186�. Coupling external fields to
the calculation, the phase structure of lattice QED was stud-
ied early in �Ref. 176� showing the onset of chiral symmetry
breaking similar to the Dyson-Schwinger approaches dis-
cussed earlier in �Ref. 174�. There were some attempts to
study the interplay of spontaneous-positron creation in a
strong external field with the chiral condensate for large fine-
structure constants, showing that one effect hinders the onset
of the other one �Ref. 176�. Since the U�1� structure of QED
also shows up in other theoretical approaches, like various
unified theories, these results also are of interest beyond the
general understanding of possible phases of the QED
vacuum. Additionally, lattice QED calculations investigated
the question of whether the theory is a “trivial theory” be-
cause of the Landau pole �Ref. 190� of the renormalized
charge at high momenta that is obtained in a re-summed
perturbative calculation. The divergence at this pole, if it
exists, then yields a vanishing renormalized coupling con-
stant for any finite bare coupling strength of the theory. The
reason for this is that in QED at small distances the vacuum
polarization gets stronger and stronger so that any charge
gets screened by the polarization cloud and the charge effec-
tively vanishes. This intriguing but largely theoretical
question—since the Landau pole �taking into account elec-
trons only� occurs at energies of about 10227 MeV, far be-
yond any unification scale and thus outside of the realm of
pure QED—has been studied on the lattice in various calcu-
lations. So far the results seem to point to the originally
assumed “triviality” of QED, leaving it as a well-defined
effective theory below a certain cutoff. Literature is given in
�Refs. 172–192�.

VII. SUMMARY

The study of QED and its vacuum structures has many
great theoretical and experimental successes. Since theory
and experiment are often pushed to the limit, deviations of
measured and calculated results show up from time to time
as in the search for vacuum birefringence and the anomalous
magnetic moment of the muon, pointing perhaps either to
new physics or to inadequately understood experimental set-
ups or theoretical corrections. So far no really clear signal
can be identified that contradicts the theory. The study of
QED and vacuum instabilities under extreme conditions is
still an exciting and developing field. As has been discussed
for the case of the over-critical Coulomb fields generated in
heavy-ion collisions, increased experimental commitment is
needed to confirm and directly observe the beauty of the
concept of the QED vacuum and its decay in strong fields.
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